Molecular Network Associated with MITF in Skin Melanoma Development and Progression

نویسندگان

  • Ichiro Yajima
  • Mayuko Y. Kumasaka
  • Nguyen Dinh Thang
  • Yuji Goto
  • Kozue Takeda
  • Machiko Iida
  • Nobutaka Ohgami
  • Haruka Tamura
  • Osamu Yamanoshita
  • Yoshiyuki Kawamoto
  • Keiko Furukawa
  • Masashi Kato
چکیده

Various environmental and genetic factors affect the development and progression of skin cancers including melanoma. Melanoma development is initially triggered by environmental factors including ultraviolet (UV) light, and then genetic/epigenetic alterations occur in skin melanocytes. These first triggers alter the conditions of numerous genes and proteins, and they induce and/or reduce gene expression and activate and/or repress protein stability and activity, resulting in melanoma progression. Microphthalmia-associated transcription factor (MITF) is a master regulator gene of melanocyte development and differentiation and is also associated with melanoma development and progression. To find better approaches to molecular-based therapies for patients, understanding MITF function in skin melanoma development and progression is important. Here, we review the molecular networks associated with MITF in skin melanoma development and progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a “Genetic Switch” Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma

Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a ce...

متن کامل

MITF: master regulator of melanocyte development and melanoma oncogene.

Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the s...

متن کامل

Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy

Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of m...

متن کامل

Rad6 is a Potential Early Marker of Melanoma Development

Melanoma is the leading cause of death from skin cancer in industrialized countries. Several melanoma-related biomarkers and signaling pathways have been identified; however, their relevance to melanoma development/progression or to clinical outcome remains to be established. Aberrant activation of Wnt/β-catenin pathway is implicated in various cancers including melanoma. We have previously dem...

متن کامل

miR-148 Regulates Mitf in Melanoma Cells

The Microphthalmia associated transcription factor (Mitf) is an important regulator in melanocyte development and has been shown to be involved in melanoma progression. The current model for the role of Mitf in melanoma assumes that the total activity of the protein is tightly regulated in order to secure cell proliferation. Previous research has shown that regulation of Mitf is complex and inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011